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ABSTRACT

1We consider a stochastic dynamic system which is governed by a multidimensional

diffusion process with constant drift and diffusion coefficients. The correction corresponds

to an additive input which is under control. There is no limit on the rate of input into

the system. The objective is to minimize the expected cumulative cost associated with the

position of the system and the amount of control excerted.

It is proved that Hamilton-Jacobi-Bellman's equation of the problem has a solution,

which corresponds to the optimal cost of the problem. An existence of optimal policy is

proved.
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1. INTRODUCTION

This problem is motivated by studies of a dissipative system under uncertainty. A

typical model would be an automatic cruise control of an aircraft subject ot uncertain wind

conditions. The problem is to balance costs associated with deviation of the airplane from

the prescribed course and fuel expenditures resulting from the correction of the course.

We assume that in absence of control the fluctuations of our stochastic system are

described by a multidimensional Brownian motion with constant n-dimensional vector -

drift g and n x n diffusion matrix c.

Y2 (t) = z +gt + ow(t)

Here x is the initial position, and w(.) is a n-dimensional standard Browniaa. motion

on (n, 7,Yi,P).

The "quality" of the position of the system is measured by a function h. We assume

that h is a strictly convex nonnegative function such that

h(x)/Ix--+oo as Ixl --. oo.

The control is realized by 2n increasing, t -adapted processes vu (t), v. (t), i = 1, 2,...,

n. The control functional v(t) is a n-dimensional F'-adapted process of bounded variation

defined

V~t )  = (VI (t), V2(0), ... n ,t)), (1.1)

(t) = (t) - V(t). (1.2)

The dynamics of the system under control is then

,% %



y.(t) = x + gt + ow(t) + v(t). (1.3)

With each initial position x and each control functional v we associate a cost

J,(i.) =E{ jo C-th(y.(t))dt +

E[ai j e~t dv!(t) + b1j e-Otdj(t)] } (.4

where ai and bi, i = 1,2,...,n are positive constanst and a > 0 is a discount factor.

Denote by V the set of all n-dimensional F-adapted processed 1/ represented in the form

(1.1), (1.2). We are looking for

u(x) = inf{J2 (v) : V) (1.5

and v* such that

U(X) = J.(v*). (1.6)

Let

[aii] = u* (1.7)

and V=('b-'a 2 .. ',-)" Put

2=. xj a1 i a2

1g

A=- -troauV o) g -V +c + a =

2

For q = (q,q 2 v,... ,qn) iRn let jqj = max jqij, Put

2
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,6(q) = max -- (ai + q,) - 7,(b, -q)] (1.9)

Note that

0(q)>0and 0(q)=0iff -a, _q,<bi,i=1,2,...,n. (1.10)

We will show that the optimal cost function u given by (1.5) satisfies that following

Hamilton-Jacobi-Bellman equation

max(Au - h, ,y(vu) - 1) = 0, (1.11)

where -y(q) = max<<, [(q+ /ai) v (q,-/bi)], and we prove the existence of the optimal cost.

In section 2 we consider a family of problems in which the allowable controls are ab-

solutely continuous with the rates uniformly bounded. We derive estimates for the cost

functions of these problems. In section 3 it is shown that a subsequence of cost functions

for absolutely continuous control problems converges to u(z) given by (1.5). Section 4 is

devoted to construction of the optimal policy.

2. Absolutely continuous control problems.

Here and in sequel we assume that the function h is strictly convex and roughly speaking

is of polynomal growth. More precisely there exist p > 1 and constants C0 , C1 and C2

such that for any 0 < A < 1, any x c R' and any x' such that x1 < 1,

0 < h(z) Co(i + I 1)P, (2.1)

Ih(x) - h(z + x')l C,(1 + h(z) + h(z + x'))1-11- 1JzI, (2.2)

. ..
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0 < h(x + Ax') + h(z - Ax') - 2h(x) _ C2 A2 (1 + h(x))Q, q = (1 - )+ (2.3)
p

Let V, be the set of all v, c V such that

v(t) = j;(a)ds, {V(s){ < C- for all s > 0, (2.4)

and

u,(z) = inf J.(v) (2.5)

Formal application of the dynamic programming principle yields the following equation

Au, + E-'(vu,) = h (2.6)

(see Fleming and Rishel (1975)). The next theorem establishes the properties of u, which

will be used in sequel.

(2.7) Theorem. Suppose h(x) satisfies (2.1) - (2.3). Then there exist Co, C 1 , C2 indepen-

dent of c(0, 1] such that for each Ac(O, 1) and each z' with Iz'I < 1 the function u,(x)

satisfies (2.8)-(2.10) below

0 < us(X) < o(1 + lzX), (2.8)

Iu,(X) - u,(z + X')l < 1 (1 + lzi + Ix + X'j)- 1x'l, (2.9)

0 < u,(x + Ax') + u,(x - Ax') - 2u,(x) < C2A 2(1 + Ix) (' ' - 2)+. (2.10)

Moreover (2.8)-(2.10) is also true for u.

4



Proof 10. Putting v - 0, we get from (2.5)

US€) 5J(o) = E{oj Cath( + ow(t) + gt)dt}

E{j Jac- tCo(1 + Ix + o'w(t) + gtIP)dt}

<5C 0 &1 + CoE{ j1 e- at x + orw(t) + gtjP)dt}

_<Coc- 1 + Co,-"clxIP,

where c is a constant dependent on a,o and g. Putting Co- Coa- max(1,c), we get

(2.8).

2'. Consider

u.(x) - u,(x + x') = inf sup() -,

_< sup J.+,(W) - J.(,') = sup J.(V) - J.+.,(V).
• lI

t  
Vp

Likewise uCz + x') - u,(x) _< sup,, J.+., (v) - J(v). Therefore

Iu,(X) - U,(x + X')I sup IJ.(V) - J.+.,(V)I

<sup E{ j0 e t h(y.(t)) - h(y.+.,(t))IdtA/
<sup CIE{ / 1 + h (y. (t)) -h(y.,t)I'

V 0 (2.11)

I(y.(t) - (yi+,,(t)It-*tdt}

:5_j',j'a-I/P sup(E{ f 1 + h(y.(t))

+h(y.+.,(t))Ie-'atdt})'-

The last inequality in (2.11) is due H6lder's inequality. By virtue of (2.8), we can consider



only those in (2.11) v for which E f0 h(y.(t))e- a ' d t < Co(1 + j)x P. Therefore, applying

H5lder's inequalitity to the last line of (2.11) once more,

lu,(x) - u'(X + X')I _ Ix'IC 1a- (2 + Co/a)(1 + jzj + Jz + x'l)' -',

whereas (2.9) follows.

3 . Since h is a convex function, the function J.(v) is convex in (x,v). Because V is a

convex set the function u,(x) is convex as well. Therefore the first part of the inequality

(2.10) follows. Put x1 = x + Ax', x2 = X - Ax'

U(x + Ax') + u,(x - Ax') - 2u,(x)

=infinfsup{J 1 , (v) + J.,,(v2) - 2J.(v)}
MI V2 ,

<_ SUP J-. (0) + JX 2 Mv- 2J. (v) (2.12)

V

!5E{j e-tC 2 A2 (1 + h(y.(t)))'dt}.

If q = 0 then (2.12) implies (2.10) in an obvious manner. If q > 0 (that is p > 2) then by

Hdlder's inequality

E{ joe-at(1 + h(yx(t)))"dt}

f 0e-0t )21, (E{ j 0eaL[1 + h(y. (t)))'" (2.13)

:5a- 2/p(-q + &o(% + I 1)")(p -2)1p

The last inequality in (2.13) is due to (2.8). Simple analysis show that (2.13) implies (2.10)

The proof of (2.8)-(2.10) for u is the same.

(2.14) Theorem. The optimal cost u,(x) is the unique solution of (2.6) under the conditions

(2.8)-(2.10).

6
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Proof 10. For a nondegenerate a the existence of a solution follows from the classical

- results (see Fleming and Rishel (1975)). If a is degenerate then consider U6 = [a, 6I] which

is a 2n x n matrix. Note that

a6 a *0 + b2j

is nondegenerate for all sufficiently small 6. Consider a new optimization problem in which

to in (1.3) is a 2n-dimensional standard Brownian motion while 0 is replaced by a6. Let

u,,6 be the corresponding optimal cost given by (2.5). Then u,, 6 satisfies

- V u,, 6 + Au,,6 + - (vu,,6 ) = h (2.14)
2

Repeating step by step the proof of the Theorem (2.7), we can see that (2.8)- (2.10) hold with

C0, C1, C 2 independent of b > 0 for all sufficiently small 6. If follows that u,,b(), VU,,6 (x)
and Au,, 6 (x) is locally uniformly (in 6) bounded in z. The latter implies existence of a

subsequence bk --+ 0 such that I A u,,6,, (x)l is locally bounded in z and

ubk(X) --,

Vu,6kX)-4 VU,(X),

locally uniformly in z and Au,,6. --+ Au, as a distribution (in Schwartz' sense). Passing to

a limit in (2.14), we get the validity of (2.6) for u,.

2°. To prove uniqueness assume that there are two solutions u, and v, of (2.6). Let

AO i E a - g a
21 a ax

(Recall A = Ao + cl). Then

Ao(u, - v,) = -cr(u, - v,) + E-' (/(vV,) - 1(VU,)). (2.15)

7
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Let W (x) = u,(x) - v,(x) and w (x) = W (x) k(x, A), where 0 (x, A) = (A\+jZj 2 )-p (the value

for the constant \ will be chosen later). If follows from (2.8) that w(x) --. 0 as IxI -* 00.

Suppose w(z) 0 0 and w(x) > 0 for some x. (If w(z) < 0 then consider v, - u,). Let

w (xo) = max w (x) > 0. (2.16)

* Calculations show that

AoOk(x,A) + [tr(aa*~ V O(x,A\) V O(x,A\)*)IH,(x,A\) = b(x, A)O~(x, A), (2.17)

where sup. j5(x,A\)j -. 0 if A .oo, and

l3(vv.) -NPvu') = -y(xE)[VV' - VU5  = --Y(x,E) V W(x), (2.18)

where 11-(x, e)I <1: 1. In view of (2.16), vw(xo) = 0. Therefore

VW(XO)O'(XO,A) = -W(xo) V O(XO,A). (2.19)

* and

VW(xO) =-W(xo) V (xoA)/(xodA). (2.20)

Since VOb(xo,A\)/t(xo, A) --. 0 as A - 0, we can combine (2.20) and (2.19) to ge',

1(VVs(xO)) - #(Vue(xo)) =W(XO)S(EA), (2.21)

where supo<,< 1 JS(E,A\)I -. 0 as A --+ oo. Also,

* ~Aow(xo) =AOW(xo)O'(xo, A) +W(xo)Aotb(xo, A) -tr(aa V W(xo) V t(xo, A)). (2.22)

8



Applying to the first term In the right a,! .. , .

(2.21), (2.17) and (2.19), we get

Aow(xo) :I-aW (xo) -+ f ) (,,,i •.. -,.

-tr(oV'(- 0(1(,, ,A)W (X,,) , (X, A). t ',

Nowchoose A >0 such that -a4-E'6 (,A)-6 (x,,,A) - 0 1r , , of

this implies w(xo) < 0 which is in contradictior, with (2.16)

3. Solution of the Hamnilton-Jacobi-Bellinan equation

Passing to a limit in (2.6), as e - 0 (and assuming for a moment corivcrgt(.(t of u,. ,.,

and Au, to u,Vu and Au respectively), we get inequalities

Au(x) < h,

-ai - vuj(x) < b. (3.2)

Assuming also that at each point x at least one of (3.1) and (3.2) is tight, we get (1.1 1).
,.

In this section we will show that u given by (1.5) is actually a solution of (1.11).

(3.3) Theorem. There exist C1 ,c 2 > 0 such that

C1ll < t(X) < C2(1 + l'I), (3.4)

Proof 1'. For xcR' put

/l xl 1j - x, if I z1 > 
2,

0 otherwise.

Let

)9
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Ct= TI(X)1 1 1>2 + E (3.5)

where

TO= 0,

k-1

,r "-inf{t > rk-1 : Ix + gt +,w(t) + E -I = 2}.
n=1

The policy C'.(t) acts in the following manner. When the process is outside the ball

of radius 2 it is instantaneously moved inside the ball of radius 1. Then there is no action

until the process reaches the boundary of the ball of radius 2, at which moment it is moved

again into the ball of radius 1 and so on. Let

U(x) =E{] e-th(x + gt + ow(t) + P,(t))dt

AO 0

+ E ea~k j[ai (Pi(rk) - j(r;)++
k=l i=i.

b,(P.,C(7k) - t',(T;))-] }, if IzI < 2.

Then

J. ) { U() if lxI < 2,

CU(X/ IxI) + Z ,.n (a ,(C/llJl- x) ,++ b (xllli - x)-), if IjxI 2. (3.6)

It is easy to see that U(x) is a continuous function and therefore bounded in {x: Ixj <

2}. Thus formula (3.6) implies that for P. given by (3.5), Jx(D,)/Ixl is bounded, whereas

the second inequality in (3.4) follows.

20. Let a=min(aiAbi,i= 1,2,...,n). Let

AR= {Igt+ w(t)j <R forall 0 <t < 1}

10



Choose R such that

P(AR) >

and

h(x)/Ixl > a for all J1 > R. (3.7)

Let jx1 > 3R and v be any policy.

Put B = {ly 8 (t)- 1x + gt + aw(t) + v(t)I > jxl/3 for all t < 1}. Then

Ji(v) :_e-'E h(y.(t))dt + a Zlvt(1) + v.-(1)] }>

(3.8)

e-' Ifoh(y.(t))1ndt + a Z114'(1) + v£4(i)](i - 1B))1A, }

i=1

We have lBh(y.(t)) > lnalxII3 by virtue of (3.7). On ARz the quantity Ix + gt + aw(t)I

exceeds 21x]/3 for all t < 1. Therefore on D n lR

E--(v+(1) + Li-(1)) > I.x1/3.."

Hence (3.8) exceeds

'Elf 1 (azx/3)ldt + (alxl/3)(1 - 1n))1,A)} e-'(ax/3)P(AR) >eajzj/6 (3.9)

Inequality (3.9) implies the first inequality in (3.4).

(3.10) Theorem. There exists a constant c and a sequence k 4 0 such that for any R > 0

there exists N such that for every k > N

11



Ulh(z) < c(1 + Jxi) for all Il <1?.

Proof. Consider a space V

V = {v :v c L,vvi eLV!},

where b - (A + xl)P-, ¢ = (A + 1x 2) - p - n+l and L denote the set of functions v on

R' for which v20 is integrable.

Inequalities (2.8)-(2.10) show that ue(x), Vu , (x) and ll~ lj are uniformly bounded

in c on every compact subset of R ' . Also the same inequalities show that u, is uniformly

bounded in L, V u, I is uniformly bounded in V! and 2 1 I is uniformly bounded in

L . Hence there exists a function UocV and a subsequence 6 k such that

u. k Uo weakly in V, (3.11)

Au,k -- Auo weakly in L(

and I(7u,) h - Au,,, is bounded in L . Therefore

lim i(Vu, ) =0. (3.13)
k.00

Since convergence of Vu, is locally uniform, by virtue of (1.10), for very R there exists

N such that for every k > N

a- < Vu,,(x) < bi + b for all jlx < R. (3.14)

Since u, (x) is monotonically decreasing, (3.14) implies the statement of the theorem.

12



(3.15)Proposition. Let Vo denote the set of v c V such that v(O) = 0. then

u(x) = inf J((v).

Proof 1. We may consider only those v for which J(v) is finite. First show that

in the mimimization problem (1.5) we can consider only those v for which there exists r

(possibly dependent on x) such that

I,'(0)I < r a.s.. (3.16)

Let P. be a policy given by (3.5) for which J.(P.) < c 2 (1 + IxI). For any policy v and

initial state x consider a policy

=r f v(t) if Iv(0)I < r,
([ ,.t) if IV, o) 1_ > ,.

If rl) > Ixl then IVr(O)I < r. Using the first inequality in (3.4),

J.(v) - J.(v') > E{cl i(0)l - -2(1 + IX); I,(O)I (3. 17(3.17)
> (CI(r - I-I) - C2(1 + IXI))P(lv(o)I _> r}.

If r > (I + II)C21/CI + IXl, then J(r) < J,;(v) while Ivr(0)I < r.

Likewise, we can show that every policy is dominated by the one for which for every

stopping time r

I IV(y.(r)) - v (Y.(--))I _ (1 + IYx(r-)1)c2/cI + ly (7-)I. (3.18)

20. Let V be any policy subject to (3.16) and (3.18) and let

V(t) if t > el

v(O)t/l + z,(t)(t - C)/E if t < C.

13
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Let g. be the trajectory corresponding to D(t; 6) and

IF = nf{t : I'(t) l > r + 1 or ID(t)l > Ixl + r + 1}

C(t; ), ifr> r, or if r<c and t<r,

ifr-<e and t > T,

where P is given by (3.5). Let y.(t) be the trajectory corresponding to v and y.(t; e) be
the trajectory corresponding to v(.; ). Then, v(t, e) = v(t) for all t > c on {r > e}. Also,

in view of (3.16)

P{r < r -- 0 as r -, 0. (3.19)

Consider

IJ=(v) - J.(v(-;}) 1 EIf h(y(t))e-a t dt;r > }

+Ej h( -°(t;c))eatdt;,> + E f h(y(t))e- a t dt

*+E[aif oeta, (t) +bij e- dvJ-(t);r S E +El] h(yx;(t;c))eatdt

+-,- [a, j --td,<(,; r) +, b1 -j etd,- (; E)]; _ Ti=1 011

+ IE{ fa,( e-"dv (t) - f e-tdv(; ;r > <

+ IE{Zi(j e -atd. (t) -j e- t dv(t;));r >el
=1

+ lE{ bi(. e- at, i- (t) - e-"tdL,,-(t;cl);,r>

= 1 + 1 +1 +14 +15 +16.
(3.20)

14



The term under expectation in I, is majorized by fo e-"th(y.(t))dt which has finite

mean by assumption. Thus I, --* 0 as v -- 0 by virtue of the dominated convergence

theorem. Since y.(t; c) = l(t) on {t < r}, we have

ly.(t;c)l = 1j..(t)l <5 IxI + r + 1 on ft < c < r).

Therefore 12 does not exceed E{Mc;r > c)} Me whereM = max, 1,51< 1+,7 + h(y).

By assumption J,(v) < oo therefore, by virtue of (3.19) and (3.16) and the dominated

convergence theorem, 13 --+ 0. By virtue of (3.18)

ly.(r;c)l _ Izi + r + 1 + (1 + Izl + r + 1)c 2 /cI (3.21)

In view of (3.6) and the strong Markov property for y.(-; c), we get that 14 does not exceed

E{Mc + c 2 (1 + Y (T; ));T < E}. Therefore (3.19) and (3.21) imply 14 - 0 as C - 0.

On the set {r > e} the functional P.+(t), t < e is bounded by jx) + r + 1. Likewise for

v! (t;c). Straightforward verification shows that both fo e -tdv +(t) and fo e-dv, (t; E)

converge to v(0) as c --+ 0. Therefore by the bounded convergence theorem 15 -0 0 as

S--+ 0. Similarly for 16.

Let V' = J,>o V1.

(3.22) Theorem The set V' is dense in Vo that is

inf J,(v)= inf J,(v).

Proof 10. Let vcV such that Jh(v) < 0o.

Put

o, if 0 < t <b
(t, 6) b-1 f=_ min(v (s),b-')ds, if t > 6.

15



It is obvious that v(t;6) = (vL(t,6)- (t,6),... ,ii(t,6) - ;(t,6)) is a continuous

functional with

I ;t,)l<_, -2.

It is also clear that

v (;6 W t (3.23)

and i(t; 6) - v(t) as b - 0 for all t except possibly a countable set of the points of

discontinuity of v . To justify convergence of J.(L(., 6)) to J.(z) we, however, need several

extra steps as well as a further modification of v(., 6).

Proof 20. Let y., be the trajectory associated with v and y.6 be the trajectory asso-

ciated with z(.,6) and let

,R = inf{t . t,(t) > R},

v = inf {t y" l=(t)l_ R).

Fix R. By virtue of the Theorem (3.10) there exist c > 0 and t}h(t)EV, such that

J.(v) < c(1 + Ix) for all IxI < 4nR. (3.24)

For every 6 less than r above, put

a(R) = TR A r,R A inf{t : max v(t) V max v,- (t) = NJ

(the constant N will be chosen later) and put

{ i(t, 6), if t < o(R),
v (a(R),6b) + 17'. (t - a(R)), if t > c(R).

16



The policy P(t, 6) coincides with policy v(t, 6) which approximates the original policy V

until either the process lI' (t) I reaches R or the process y (t)I reaches the level 4nR or one

of the control functionals z' (.) exceeds N. After that P(., 6) switches to the policy whose

expected cost grows with z at the rate not exceeding Izl. It is obvious that v(., 6)46. In

the sections 30 and 40 we will show

1-m J.(r/(.,6)) <_ J. (v). (3.25)
6-.0

R-0o

3 . From the definition of v(., 6) it is clear that

,,,! (t- <IM V (tI ) <_ ,.¢(t).

6-0

Similarly if t, --4 t

z(t-) _ ini a.A(tn,6) ! V (t). (3.26)

Suppose that with positive probability

I'M r4snR <Tr. (3.27)

,'p9 Let w(t) be the trajectory for which (3.27) holds. Then there exists a sequence 6,, 0

and a bounded sequence t,, < rn such that

,i 4 (t,)l > 4R. (3.28)

By choosing a subsequence if necessary, we may assume t., -+ t. Since Iyzd(t,)I < Rt

on {t,, < rR}, (3.28)) implies

l Iy:7(tn) - yi, (tV) r jim (t,b,) - v,(tn)I > 3R. (3.29)

17
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However vi is continuous from the right and has left limits. Therefore

,; < l- ,(t,) <z,(t). (3.30)
Ii-t m.-,.t

Inequality (3.30) and (3.26) show that

limlvi(t,,6,) - V(t,,l _ IN(t) - ,,,(t-)l (3.31)

however, Ivi(t) - Y(t-)l = ly,(t) - y,.(t-)l < 2R on the set {t < TR}. The latter

contradicts to (3.31) and (3.29). Therefore the probability of (3.27) is null.

40. For any policy v, put

V.Ct,.,) = j -at h(y.(t))dt + [ai j e- t dv,,(t) + b, f -atdv- (t)

Since rR T oo as R - oo, we can apply the dominated convergence theorem to obtain

g.(t)= lim E{j(rR,v)},
R-oo

which implies

Jim E{j,(oo, v) - j.(r,,v)) = 0.
R-CO

Applying the strong Markov property for y.(.) and the first part of the inequality (3.4), we

get

E{e-"cR} <_ E{e-"cjy(rjz)j} -- 0 as R -, oo. (3.32)

Consider

18
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(3.33)
= E{j=(,CR), t (.,,6))}+E{j(oo, v(.,,6)) - j=(c,R), P(.,,6)))}3.3

In view of (3.32) there exists R such that

c(1 + 4nR)E{e- R} < '. (3.34)

Then choose N such that

c(1 + 4nR)P{max v+(rz) V maxv-(rR) > N} <c. (3.35)
$ I

since (3.27) does not hold a.s.

• c(R) --* TR A inf{t : maxv!+(t) v maxv-(t) = N} =, as 6 -- 0.

Since Fl(t, b) -- ilt) for all t < except a countable number of t

(j=(oR),b(.,6)) Lj=( ,). (3.36)

Moreover the convergence in (3.36) is bounded because ly.,(t)l < R and jy6(t)j < 4R

and ,(t;b) < v (t) < N if t < a(R). Therefore

lim E{j.(a(R),l(.,6)} --* E{j,( ,v)} < J.(u). (3.37)
6-0O

In view of (3.24) and the strong Markov property for y' the second term in (3.33) does

not exceed

19
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E{ecR)E + jy6 °((R))}

< c(l + 4R)E{e-a;(R)}

<c(I + 4R) [E{,e0TrR = a (R)}

Ee-f()r > r46} (3.38)

-{E{e-aff(R); 7R >C]

_< c(1 + 4R)E{e - "' } + c(1 + 4R)P{R > rTR}

+c(l + 4R)P{r > C}.

The first term in (3.38) does not exceed c by virtue of (3.34). Since (3.27) holds with

probability zero the second term in (3.38) can be made smaller than c when 5 is sufficiently

small. The third term in (3.38) does not exceed e in view of (3.35). In view of arbitrariness

of c, we get (3.25). The statement of the theorem is a trivial consequence of (3.25).

(3.39) Corollary. For every x

lim u,(X) = u(x).

The proof of this theorem follows from Proposition (3.15) and Theorems (3.22).

(3.40) Theorem. The optimal cost u given by (1.5) satisfies (1.11).

Proof. The proof of Theorem (3.10) shows that there exists a function u0 for which

(3.11) and (3.12) hold.

Since O(q) is a continuous function of q and Vu,. -V u we have

fl(VUo) = 0 (3.41)

and in view of (1.10) we get (3.2). From (2.6)

20
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Au. < au, + -',(vu,) = h

and it follows (after passing to a limit as ei --+ 0)

Auo < h

Suppose -y(Vuo(xo)) < 1, that is

-ai < Vuo(xo)i < bi for all 1 < i < n. (3.42)

By virtue of the continuity of Vuo, the inequality (3.42) is true for all Ix - x0[ < 6 for

some 6 > 0 since convergence of Vu,, to VuO is locally uniform (see the proof of Theorem

(3.10)) the inequality (3.42) is true for Vusk for all Ix - xoI < 6 and all k sufficiently large.

For such k

Au,, = h

and, passing to a limit as k --* oo,

Auo =h, (3.43)

that is -y(Vu) < 1 implies (3.43). In view of corollary (3.39), u = lim u, hence u0  u and

the theorem is proved.

4. Construction of the optimal policy

Let

A 2 h(z,y) = (h(x) + h(y))/2 - h((z + y)/2). (4.1)
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By virtue of (2.3)

A 2h(x,y) > 0, if x 6y. (4.2)

(4.3) Theorem. The optimal policy v* (if exists) is unique.

Proof. Suppose there are '* and '4 for which (1.6) is true. Let y.4(t) and y2(t) be the

corresponding trajectories. Put v = ('4 + '4)/2 and y(t) = (yy.t) + y2(t))/2. Then

u(x) - J=(v) =(J.(v*) + J=(v))/2 - J.,(V)

By virtue of (4.2) the right hand side of (4.4) is strictly positive if ,'4 and '4 are not

equal a.s.

Let mT be a measure on ([0,TI x fl,B[0,T] x r) equal to the product of Lebesgue

measure and P.

(4.5) Theorem. If

J,,(vk) --+u(x) as k --. oo, (4.6)

then Lk(t, w) converges in measure MT.

Proof. 10. Let y. be the trajectory corresponding to Vk - then

E lly1(t)>NIdt --0 as N -* oo (4.7)

uniformly in k. Really

22
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J~vk &GTE IT(Yk (t)) dt}

> C
- a T inf h (x)E { f l l. t) >N d t( .

Because J(vk) is uniformly bounded in k and limN-o. inf1lj>N h(x) = oo, we get

(4.7).

20. We need to show that for any c > 0

Ej l1lV(t!_V(tl>gdt -0 as m,k -k oo. (4.9)

Suppose that the expectation in (4.9) is greater than b > 0 for all m and k (or for all

m and k from a subsequence). Let N be such that the expectation in (4.7) is less than 6/2

for all k. Then

(Jz(Vk)+J.(v.,))/2 - J.((Vk + LI.,)/2)

> aE- J IL A2h(y' (t), y.Nd
(4.10)

> C -aT p(e,N) E If(o tl l~()<,';:(l<d

e- aT p(e,N)6/2,

where p(c,N) = infl _ l>!;l-lj<N A 2 h(x,y). (Usual continuity/compactness arguments

show that p(e,N) > 0 for any N). Inequality (4.10) and (4.6) imply lim.1 ,((vK ,,,)/2) <

u(x) and we come to a contradiction.

(4.11) Corollary. There exists an optimal policy v.

Proof Taking a sequence 1 k for which (4.5) is true, and using a diagonal method, we can

find a subsequence L/,k which converges a.e. mT for each T> 0. Usual argument show an

existence of v such that

23
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,(t,w) = lim1.',.k(t, W) (4.12)

for Leb x P almost all (t, w). By Fatou's lemma

limJ.(,.) __ J.(lim(vk.)) .. (,).

Thus J, (i) < u(x). Therefore v given by (4.12) coincides with v*.

24
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